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Abstract. The time evolution of a damped two-level atom coupled to a damped field mode at resonance is
calculated analytically as well as numerically in the basis of dressed states. We study the dynamics of the
density matrix and of observables, e.g. the number of field quanta. For the initial states we consider the
field to be in a Fock or Glauber state and the atom in the ground or excited state. We show the significant
influence of the damping on the well-known phenomena of this model, e.g. collapse and revival.

PACS. 31.70.Hq Time-dependent phenomena: excitation and relaxation processes, and reaction rates –
32.80.-t Photon interactions with atoms – 33.80.-b Photon interactions with molecules – 42.50.Ct Quantum
description of interaction of light and matter; related experiments

1 Introduction

The Hamiltonian of the Jaynes-Cummings-model [1]

H = ~ω (1
2σz + Ψ† Ψ) + 1

2~g (σ+ Ψ + σ− Ψ
†) (1)

is the commonly preferred framework for describing the
interaction of an atom (or ion or molecule) with the elec-
tromagnetic field (or the harmonic oscillation of the center
of mass of the atom in an external field). The Hamiltonian
describes stimulated emission and absorption at resonance
– with detuning we would need two frequencies ωA 6= ωL.

In the following we use the eigenstates of the Hamil-
tonian (“dressed states”) [2–4]

|ε, n〉 =
|↓, n+ 1〉+ ε|↑, n〉√

2
(2)

with ε = ± and n ∈ {0, 1, . . .}. In addition we have the
ground state | ↓, 0〉 with energy − 1

2~ω. This state can
formally be included by allowing n = −1, as | ↓, 0〉 =
(|+,−1〉 + |−,−1〉)/

√
2. The eigenvalues of the Hamilto-

nian are given by

H |ε, n〉 = |ε, n〉 ~{(n+ 1
2 ) ω + ε 1

2Ωn} (3)
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with the Rabi frequency

Ωn =
√
n+ 1 g. (4)

In order to describe dissipation, e.g. spontaneous emission,
one has to treat the system as open. We prefer to use the
master equation (“Liouville equation”) [5–8]

d%
dt

=
[H, %]

i~
+ γA ([σ−%, σ+] + [σ−, %σ+])

+ γL ([Ψ%, Ψ†] + [Ψ, %Ψ†])

+ 1
2γP ([σz%, σz ] + [σz , %σz ]) (5)

where the damping of the atom and of the field mode are
treated separately, with γA and γL being their respective
decay constants. A dephasing of the atomic coherence is
incorporated by the last term which is usually written
as γP (σz%σz − %). The environment is assumed to be at
zero temperature, hence no thermic excitation is included.
The Liouville equation (5) conserves tr% = 1 and guaran-
tees that the density operator remains a Hermitian and
positive operator as shown by Lindblad [6].
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We will use the parameters of the microwave experi-
ment at Paris [9]1

ω = 321 GHz � g = 151 kHz � γL = 3 kHz
≈ γP = 2.5 kHz � γA = 17 Hz. (6)

Because of γL � γA many authors (e.g. [12–14]) neglect
the damping of the atom. However, we will show, that this
can straightforwardly be included in the first order as long
as the sum γA + γP is not significantly larger than γL.

Our method to solve equation (5) in the basis of
dressed states (Eq. (2)) is motivated by the physical pa-
rameters in equation (6): high quality experiments tend to
reduce damping as much as possible. In this strong cou-
pling limit (g � γL, γA, γP) it seems advisable to treat the
system in a basis that diagonalizes the Hamiltonian. Only
in the opposite regime of strong damping (γL, γA, γP � g)
should one use a basis of damped states [15]. In this ref-
erence the problem is solved even for detuning (ωA 6= ωL)
and for T 6= 0. This could be achieved, however, only by
more elaborate mathematical tools, involving 4×4-matrix
continued fractions and with all the parameters in equa-
tions (1, 5) whereas we employ an interaction representa-
tion with mean damping. In this way the problem needs
not to be treated on the very short timescale 1/ω and all
4×4-matrices are nearly diagonal: we can approximate the
findings by scalar equations and so the problem does not
become “rather involved” as suggested in reference [15].
This reference also deals with the number of field quanta
through an expression (Eq. (4.16) in their paper) based
on an infinite number of “constants an, bn, cn... which are
determined by the initial state of the field”. Technically
this is correct but there is no further explanation. That is
there is no discussion of the initial Glauber state.

In [16] the problem is treated analytically for large
detuning.

We are not only interested in the evolution of the den-
sity matrix as given by equation (5) or of equivalent quasi
probabilities [12–14] but also in the dynamics of observ-
ables.

In the next section we express equation (5) as a ma-
trix equation in the basis of dressed states: the damping
acts as a non Hermitian “interaction” and we introduce
a non unitary transformation to simplify the differential

1 In that experiment the “ground state” of our model can
decay to a third state, because it is a highly excited Rydberg
state. However, there the detector only counts atoms which are
either in the ground or in the excited state: atoms in the third
(decayed) state do not contribute to the signal. Furthermore
the corresponding decay rate is about equal to γA and thus
much smaller than any other relevant frequency. We there-
fore do not take this effect into account in our model. One
might be tempted to also neglect the decay of the excited state
to the ground state. We keep this parameter for the general-
ity of the model, which can also be applied to experiments
where γA is considerably larger, e.g. to the experiments at
Konstanz (now Garching) [10] (ω = 2400 THz, g = 101 MHz,
γL = 5 MHz, γA = 9 MHz) and Pasadena [11] (ω = 2210 THz,
g = 201 MHz, γL = 13 MHz, γA = 8 MHz). (We do not know
about the phase decay of these experiments.)

equation. This is solved approximately in Section 3 to pro-
ceed analytically. The diagonal elements of the density
operator (Sect. 4) are especially interesting since they ac-
quire a time dependence through the damping. Here we
derive simple expressions for an initial Fock state (“num-
ber state”) or Glauber state (“coherent state”) of the field
and ground or excited state of the atom. These matrix el-
ements are used to calculate the number of field quanta
in Section 5. In Section 6 we remedy the approximation
in Section 3 and describe the correct procedure. However
this is only feasible numerically.

After that we show the danger of calculating the time
evolution of observables in the Jaynes-Cummings model
directly – in the quasi classical approach one neglects the
correlation between atom and field and thus collects large
errors even without damping (Sect. 7). This problem is cir-
cumvented in Section 8 by using a set of four characteristic
functions which include all the correlations between field
and atom. Their time dependence is given by a system of
partial differential equations. In Section 9 this method is
demonstrated for an undamped system, where an analytic
solution can be found. With damping one has to resort to
approximations as shown in Section 10. As an example
the time dependence of the number of field quanta is cal-
culated.

2 Transformation of the Liouville equation

Starting from equation (5) which can be written as a sys-
tem of inhomogeneous linear differential equations and
with the abbreviation r±n =

√
n+ 2±

√
n+ 1 we have

〈ε, n|%̇|ε′, n′〉 = −〈ε, n|%|ε′, n′〉 {i(n− n′)ω
+ i

2 (εΩn − ε′Ωn′) + (n+ 1 + n′) γL + γA + γP}
−(〈ε, n|%| − ε′, n′〉+ 〈−ε, n|%|ε′, n′〉) 1

2 (γL − γA)

+〈−ε, n|%| − ε′, n′〉 γP

+〈+ε, n+1|%|+ ε′, n′+1〉 1
2 (r+

n r
+
n′ γL + εε′γA)

+〈+ε, n+1|%| − ε′, n′+1〉 1
2 (r+

n r
−
n′ γL − εε′γA)

+〈−ε, n+1|%|+ ε′, n′+1〉 1
2 (r−n r

+
n′ γL − εε′γA)

+〈−ε, n+1|%| − ε′, n′+1〉 1
2 (r−n r

−
n′ γL + εε′γA).

(7)

The solution of the differential equation (having no homo-
geneous term)

〈↓, 0|%̇|↓, 0〉 = (〈+, 0|%|+, 0〉+ 〈−, 0|%|−, 0〉) (γL + γA)
+ (〈+, 0|%|−, 0〉+ 〈−, 0|%|+, 0〉) (γL − γA) (8)

is already given by the other diagonal elements 〈ε, n|%|ε, n〉
because the Liouville equation conserves tr % = 1.

Splitting off time dependent factors will help to solve
the problem:

〈ε, n|%|ε′, n′〉 = exp {−i(n− n′)ωt} 〈ε, n| % |ε′, n′〉 (9)

= exp
{
− [ i(n− n′)ω + (n+ 1 + n′) γL

+ γA + γP] t
}
〈ε, n| %̃ |ε′, n′〉, (10)
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where % corresponds to the interaction representation and
%̃ also takes into account the mean damping. Here the
atomic energy and phase decay γA and γP do not con-
tribute individually but only as a sum. The density matrix
for given n and n′ forms a 2×2-matrix, which we write as
a vector with 4 components:

%nn′ =

 〈+, n| %̃ |+, n
′〉

〈+, n| %̃ |−, n′〉
〈−, n| %̃ |+, n′〉
〈−, n| %̃ |−, n′〉

 · (11)

The Liouville equation then appears as

d%nn′
dt

= Lnn′ %nn′ + exp (−2γLt) Γnn′ %n+1,n′+1. (12)

Here we used the real 4×4-matrix

Γnn′ =
γL

2


r+
n r

+
n′ r

+
n r
−
n′ r
−
n r

+
n′ r
−
n r
−
n′

r+
n r
−
n′ r

+
n r

+
n′ r
−
n r
−
n′ r
−
n r

+
n′

r−n r
+
n′ r
−
n r
−
n′ r

+
n r

+
n′ r

+
n r
−
n′

r−n r
−
n′ r
−
n r

+
n′ r

+
n r
−
n′ r

+
n r

+
n′


+
γA

2

 1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
1 −1 −1 1

 (13)

and the complex and symmetrical

Lnn′ = −i


Ω−nn′ 0 0 0

0 Ω+
nn′ 0 0

0 0 −Ω+
nn′ 0

0 0 0 −Ω−nn′


− γL − γA

2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

+ γP

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (14)

with the frequencies

Ω±nn′ = 1
2 (Ωn ±Ωn′). (15)

(Thus we have r±n = 2Ω±n+1,n/g.)

3 Solutions of the Liouville equation

The Liouville equation (12) can be solved after diagonal-
ization of the matrix Lnn′ . This transformation is given in
Section 6 and was used for a numerical solution. However,
because of (γL, γA, γP) � g we neglect the non-diagonal
part of Lnn′ (Eq. (14)) for n 6= n′. In this case the atomic
damping is only contained in the time dependent factor
previously split off (Eq. (10)). For n = n′ however, we have
Ω−nn′ = 0, so this case has to be considered separately. Fur-
thermore, with regard to γA . γL and r+

n � r−n we can
approximate the matrix

Γnn′ ≈
γLr

+
n r

+
n′

2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (16)

With these simplifications the four components of %nn′
decouple. The differential equation (12) can now be un-
derstood as a scalar equation for each component as
long as Lnn′ is replaced by the appropriate diagonal el-
ement ∓iΩ∓nn′ .

In the case n = n′ we have Ω−nn′ = 0. Then one has to
consider

%±nn(t) =
〈+, n| %̃ |+, n〉 ± 〈−, n| %̃ |−, n〉√

2
(17)

with the eigenvalues Lnn = ±γP instead of the first and
fourth elements of the vector %nn(t). The eigenvalues ±γP

do not depend on n and can obviously be incorporated in
equation (10): i.e.

∑
ε〈ε, n| %̃ |ε, n〉 does not have the factor

exp (−γPt) and the difference 〈+, n|%̃ |+, n〉−〈−, n|%̃ |−, n〉
decays faster than the sum. Thus, in this special case the
atomic energy and phase decay γA and γP do contribute
individually unlike in the previous discussion.

The differential equation can be solved with the ansatz

%nn′(t) =
∞∑
k=0

ann′k exp [(Ln+k,n′+k − 2kγL) t], (18)

if for all pairs (n, n′) not only the initial conditions

%nn′(0) =
∞∑
k=0

ann′k (19)

but also the equations for all k ∈ {1, 2, . . .}

(Ln+k,n′+k − Lnn′ − 2kγL) ann′k = Γnn′ an+1,n′+1,k−1

(20)

are satisfied. If the field excitation is finite, i.e. there exists
a maximal quantum number n0, the upper limit of the sum
is given by n0 − n.

This is for example the case if the field starts in a
Fock state with ni quanta. If the initial state of the atom
is the excited state | ↑〉 (or the ground state | ↓〉) we have
according to equation (2) n0 = ni (or n0 = ni − 1 resp.).
Therefore all %nn′(0) vanish except

%n0n0(0) = 1
2

 1
∓1
∓1

1

 , (21)

where the upper (lower) case refers to the atom starting
in the excited (ground) state.

For general initial conditions we take advantage of the
linearity of the system of differential equations: we de-
compose %nn′(0) in the basis %n0n0′(0) and construct the
general solution by superposition. Starting with

an0n0′k = δk0 %n0n0′(0) (22)

and iterating with n ∈ {n0 − 1, . . . , 0}

an−k,n′−k,k
ann′0

=
k∏
l=1

Γn−l,n′−l
Lnn′ − Ln−l,n′−l − 2lγL

(23)
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for k ∈ {n0 − n, . . . , 1}, where

ann′0 = −
n0−n∑
k=1

ann′k, (24)

the coefficients ann′k can be evaluated. In equation (23) it

is advantageous to approximate r+
n ≈ 2

√
n+ 3

2 , i.e.

Γnn′ ≈ 2γL

√
n+ 3

2

√
n′ + 3

2 · (25)

For n < n0 the constraint (24) can be incorporated into
equation (18), reducing the sum by one term:

%nn′(t) = exp (Lnn′t)

×
n0−n∑
k=1

ann′k {exp [(Ln+k,n′+k − Lnn′ − 2kγL) t]− 1} ·

(26)

For real %n0n0′(0) two of these solutions are complex con-
jugate with respect to the other two.

4 Diagonal elements of the density matrix

Without damping 〈ε, n|%|ε, n〉 would be constant in time.
With damping however, Ω−nn = 0 = Ω−n−l,n−l leads to

annk = (−)k
(
n0 + 1

2

n0 − n

)(
n0 − n
k

)
%n0n0(0), (27)

and thus

%nn(t) =
(
n0 + 1

2

n0 − n

)
%n0n0(0) [1− exp (−2γLt)]n0−n. (28)

The binomial coefficient can be expressed by gamma func-
tions or a Pochhammer symbol ([17] Eq. (6.1.22))

(c)n =
Γ (c+ n)
Γ (c)

= c (c+1) · · · (c+n−1), (29)

namely:(
n0 + 1

2

k

)
=

Γ (n0 + 3
2 )

k! Γ (n0 + 3
2 − k)

=
(n0 + 3

2 − k)k
k!

· (30)

Pochhammer symbols will appear on various occasions.
Specializing to an initial Fock state of the field – i.e.

starting with 〈ε, n|%|ε, n〉 = 1
2δnn0 (Eq. (21)) – we have

∑
ε

〈ε, n|%|ε, n〉 = exp {−[(2n+ 1)γL + γA] t}

×
(
n0 + 1

2

n0 − n

)
[1− exp (−2γLt)]n0−n. (31)

For the probability of the ground state,

〈↓, 0|%|↓, 0〉 = 1−
∑
ε,n

〈ε, n|%|ε, n〉 (32)

we use

(−n0)n = (−)n
Γ (n0 + 1)

Γ (n0 − n+ 1)
(33)

and rewrite the binomial coefficient(
n0 + 1

2

n0 − n

)
= (−)n

(
n0 + 1

2

n0

)
(−n0)n

(3
2 )n

(34)

leading us to the hypergeometric function ([17]
Eqs. (15.1.1) and (3.4))

F

(
a b
c

∣∣∣∣ x) =
∞∑
n=0

(a)n (b)n
(c)n

xn

n!

=
1

(1− x)a
F

(
a c− b
c

∣∣∣∣ x

x− 1

)
(35)

and the final result

〈↓, 0|%|↓, 0〉 = 1− exp [−(γL+γA) t]

×
(
n0 + 1

2

n0

)
F

(
−n0

1
2

3
2

∣∣∣∣ exp(−2γLt)
)
. (36)

Note that ([17] Eq. (15.1.20))(
n0 + 1

2

n0

)−1

= F

(
−n0

1
2

3
2

∣∣∣∣1) (37)

canceling the hypergeometric function at t = 0, hence we
get 〈↓, 0|%|↓, 0〉t=0 = δn0,−1, as expected.

These results are displayed in Figures 1–4. Note that
in the case n = n′ and ε = ε′ (upper part of Fig. 1 and
both parts of Fig. 2) the sum and the difference of the
matrix elements 〈+, n|%(t)|+, n〉 and 〈−, n|%(t)|−, n〉 show
different time dependences (as discussed above): the sum
does not depend on γP at all, whereas the difference is
additionally damped by exp(−2γPt). Due to the initial
condition in Figure 1 〈+, n|%|+, n′〉 − 〈−, n|%|−, n′〉 = 0
the difference remains zero. When starting with a dressed
state |ε, n0〉 (Fig. 2) there is a difference depending on γP:
due to the dephasing a population of the complementary
states | − ε, n〉 builds up.

In all other cases (n 6= n′ or ε 6= ε′) only the sum
γA + γP is relevant.

If the field starts in a Glauber state, i.e. with % =
|εα〉〈εα|, we linearly combine the previous solution (31)
according to

〈ε, n0|↑, α〉 =
ε√
2

exp
−|α|2

2
αn0

√
n0!

, (38)

〈ε, n0|↓, α〉 =
1√
2

exp
−|α|2

2
αn0+1√
(n0 + 1)!

· (39)
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Fig. 1. Density matrix elements 〈ε, n|%|ε′, n〉: (—–) n even, (- - -) n odd, (· · · ) 1
2 〈↓, 0|%| ↓, 0〉, if initially the atom was in the

ground state and there were 5 field quanta. Parameters γL/g, γP/g and γA/g as in equation (6). The upper part is calculated
with equation (31) and does not depend on the parameter γP.

Fig. 2. Diagonal density matrix elements 〈ε, n|%(t)|ε, n〉 in the upper diagram, 〈−ε, n|%(t)| − ε, n〉 in the lower diagram (note
the different scaling), when starting purely with the dressed state 〈ε, 4|%|ε, 4〉: (—–) n even, (- - -) n odd, (· · · )〈↓, 0|%| ↓, 0〉).
Parameters as before. The curves (—–) and (- - -) follow from equation (31) with an additional factor 1

2 [1+exp (−2γPt)] (upper
part) and 1

2 [1− exp (−2γPt)] (lower part): with the new initial state the results depend on the parameter γP.
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Fig. 3. Density matrix elements 〈ε, n| % |ε′, n − 1〉: (—–) n even, (- - -) n odd, when starting purely with 〈±, 4| % |±, 3〉 = 1
2
.

Parameters as before. The rather small value of Re〈±, 3| % |±′, 2〉 is connected with a bigger one of the imaginary part of the
matrix element.

Fig. 4. Density matrix elements 〈ε, n| % |ε′, n − 2〉: (—–) n even, (- - -) n odd, when starting purely with 〈±, 4| % |±, 2〉 = 1
2
.

Parameters as before.
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Since terms with n0 < n give no contribution we
replace n0 − n → m and find with the help of equa-
tions (29, 30) and the confluent hypergeometric function
(Kummer’s function [17] Eqs. (13.1.2) and (27))

M(a, b, x) =
∞∑
m=0

(a)m
(b)m

xm

m!
= ex M(b− a, b,−x) (40)

the relation∑
n0

(
n0 + 1

2

n0 − n

)
(|α|2 − τ)n0−n

(n0 + 1
2 ∓

1
2 )!

=

M(n+ 3
2 , n+ 3

2 ∓
1
2 , |α|2 − τ)

Γ (n+ 3
2 ∓

1
2 )

· (41)

Here we have used the abbreviation

τ = |α|2 exp(−2γLt), (42)

and finally find∑
ε

〈ε, n|%|ε, n〉 = exp [−(γL+γA) t− τ ]
τn

n!

×

 M(1
2 , n+ 1, τ − |α|2),

|α|2
n+1

M(1
2 , n+ 2, τ − |α|2),

(43)

according to the initial state of the atom: the upper case
corresponds to the excited atom, the lower one to the
ground state.

5 Expectation values: the number of field
quanta

Let us evaluate, how the number of field quanta depends
on time in the presence of damping. Equation (2) results in

〈Ψ†Ψ〉 =
∑
ε,n

(n+ 1
2 ) 〈ε, n|%|ε, n〉+ 1

2 〈ε, n|%| − ε, n〉 ·

(44)

If there was initially a Fock state with ni quanta, we find
with equation (31)∑
ε,n

(n+ 1
2 ) 〈ε, n|%|ε, n〉 = (ni ± 1

2 ) exp [−(2γL+γA) t],

(45)

since∑
n

(n+ 1
2 )
(
n0 + 1

2

n0 − n

)
zn = (n0 + 1

2 )
√
z (1 + z)n0−1/2.

Furthermore we have in this case

1
2

∑
ε,n

〈ε, n|%| − ε, n〉 = ∓ 1
2

∑
n

〈+, n|%|−, n〉, (46)

Fig. 5. The number of field quanta, if one starts in a Fock state
with 5 photons and the atom in the ground state, remaining
parameters as before (—–). The curve (- - -) displays the main
contribution

P
ε,n(n+ 1

2 )〈ε, n|%|ε, n〉 given by equation (45).

but this sum can only be evaluated numerically. An ex-
ample is shown in Figure 5.

If the field started in the Glauber state |α〉, equa-
tion (43) yields∑
ε,n

(n+ 1
2 ) 〈ε, n|%|ε, n〉 = |α|1∓1 exp [−(γL+γA) t− τ ]

×
∑
n

(n+ 1
2 ) τn

Γ (n+ 3
2 ∓

1
2 )
M(1

2 , n+ 3
2 ∓

1
2 , τ − |α|

2). (47)

This expression can be simplified considerably as shown
in Figure 6 and explained subsequently.

By expanding in powers of τ−|α|2 instead of τ , i.e. by
using the series in equation (40), and utilizing

Γ (n+ 3
2 ∓

1
2 ) (n+ 3

2 ∓
1
2 )m = Γ (m+ n+ 3

2 ∓
1
2 )

= Γ (m+ 3
2 ∓

1
2 ) (m+ 3

2 ∓
1
2 )n (48)

we get

∑
n

(n+ 1
2 ) τn

(m+ 3
2 ∓

1
2 )n

=
(
τ
∂

∂τ
+

1
2

)
M(1,m+ 3

2 ∓
1
2 , τ)

= τ
M(2,m+ 5

2 ∓
1
2 , τ)

m+ 3
2 ∓

1
2

+
M(1,m+ 3

2 ∓
1
2 , τ)

2
· (49)

Taking the asymptotic values τ � 1 of Kummer’s func-
tions ([17] Eq. (13.5.1)) this expression can be transformed
into the product Γ (m+ 3

2 ∓
1
2 )eτ (τ ± 1

2 −m)/τm+(1∓1)/2

and we find∑
ε,n

(n+ 1
2 ) 〈ε, n|%|ε, n〉 = exp [−(γA ± γL) t]

×
∑
m

(τ ± 1
2 −m) (1

2 )m
[1− exp(2γLt)]m

m!
· (50)
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Fig. 6. Comparison of the expressions in equation (47) (—–)
and equation (51) (- - -) for |α|2 = 5 after splitting off the fac-
tor exp {−(γA +γP) t}: there is no noticeable difference if the
atom was initially excited (| ↑, α〉), and only a small deviation
if it began in the ground state (|↓, α〉). (Of course the approx-
imation Eq. (51) can only fail for small τ ≡ |α|2 exp (−2γLt),
i.e. large t.)

We have ([17] Eq. (15.1.8))
∑
m(a)m xm/m! = (1− x)−a

and in addition (1
2 )m+1 = 1

2 (3
2 )m. Thus equation (47) can

be simplified to∑
ε,n

(n+ 1
2 ) 〈ε, n|%|ε, n〉 = exp [−(2γL+γA) t]

×
{

(|α|2 − 1
2 ) exp (−2γLt) + 1,

|α|2 − 1
2 ·

(51)

If the atom was initially in the ground state (lower case),
this result for a field of an initial Glauber state |α〉 re-
sembles that of a field of an initial Fock state (Eq. (45))
with ni = |α|2.

6 Diagonalization of the Liouville equation

The Liouville equation (12) can be solved exactly after
diagonalization of the matrix Lnn′ . We call this diagonal
matrix Onn′ = Tnn′Lnn′Tnn′

−1 and use the vector

Pnn′(t) = Tnn′%nn′(t) (52)

to get

Ṗnn′ = Onn′ Pnn′

+ exp (−2γLt) Tnn′Γnn′Tn+1,n′+1
−1Pn+1,n′+1. (53)

The eigenvalues follow from an equation of fourth de-
gree. In the cases of biquadratic characteristic equations,
namely if γP = 0 or if γL = γA, the solutions can be given
in a simple analytical form.

6.1 Case γP = 0

In order to write the transformation matrix Tnn′ in a sim-
ple form we choose

ωn =
√
Ωn2 − (γL − γA)2 (54)

and

an =
γL − γA

ωn +Ωn
(55)

which gives

Tnn′ =
1√

1− an2
√

1− an′2

×

 1 ian′ −ian anan′
ian′ −1 anan′ ian
−ian anan′ −1 −ian′
anan′ ian −ian′ 1

 . (56)

Note that in this form Tnn′ = Tnn′
−1 so that %nn′ =

Tnn′Pnn′ . Now, using the frequencies

ω±nn′ = 1
2 (ωn ± ωn′) (57)

we find

Onn′ = −i


ω−nn′ 0 0 0

0 ω+
nn′ 0 0

0 0 −ω+
nn′ 0

0 0 0 −ω−nn′

 . (58)

Since the damping is assumed to be small we have ωn ≈
Ωn, ω±nn′ ≈ Ω±nn′ and an � 1. This renders our procedure
described in the previous sections to be a good approxi-
mation.

6.2 Case γL = γA

In the case γL = γA the biquadratic characteristic equa-

tion yields the two eigenvalues +i
√
Ω±nn′

2 − γP
2 and two

with the opposite sign. This simplifies to iΩ±nn′ for γP � g,
but for n = n′ the root with the lower sign is equal to iγP:
thus the already mentioned eigenvalues ±γP replace the
vanishing eigenvalues ±iΩ−nn.

7 Time dependence of expectation values

In principle it is sufficient to know the time dependence
of the density matrix. Yet, one then needs the full initial
state, i.e. all density matrix elements 〈±, n|%|±, n′〉 and
〈±, n|%|∓, n′〉 with n, n′ ∈ {0, 1, . . .} at time 0.

On the other hand we are normally interested only in a
few observables, e.g. 〈Ψ†Ψ〉, 〈Ψ〉 and 〈σi〉. Therefore we do
not need to know all elements of the density matrix. It ap-
pears tempting to concentrate on the relevant observables
and to find their time dependence via

d〈A 〉
dt

= tr
(
A

d%
dt

)
· (59)
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Fig. 7. 〈P/p0〉 as a function of 〈X/x0〉 in the course of time
(damping neglected and after separation of the trivial time de-
pendence exp (−iωt)) – left figure with correlations, right with-
out correlations. In the left figure the solid line develops into
the broken one and afterwards into the dotted one: the corre-
lations produce the well-known collapse [24] and revival [25]
of the initial state. Parameters: initially the atom was in the
ground state and there were 5 photons in a Glauber state
(α =

√
5).

But in our case of a coupling between atom and field and
damping processes we find

d〈Ψ〉
dt

= −(iω+γL) 〈Ψ〉 − i
2g 〈σ−〉, (60)

d〈σ−〉
dt

= −(iω+γA+2γP) 〈σ−〉+ i
2g 〈Ψσz〉, (61)

d〈σz〉
dt

= −2γA 〈1 + σz〉+ 2g Im〈Ψσ+〉, (62)

d〈Ψ†Ψ〉
dt

= −2γL 〈Ψ†Ψ〉 − g Im〈Ψσ+〉, (63)

and so on: there is a coupling to more and more observ-
ables – with higher and higher powers of Ψ and Ψ†.

It is alluring to break off this system of equations by
neglecting higher correlations of 〈f(Ψ, Ψ†)σi〉 and to fac-
torize this expression by 〈f(Ψ, Ψ†)〉 〈σi〉: this is used e.g.
in the well known quasi classical approximation – where
atoms are described quantum mechanically, but the elec-
tromagnetic field is described classically. However, this
procedure is faulty, as shown on various occasions [18–23]
and can be seen from Figure 7.

8 Characteristic functions

The appearance of more and more expectation values can
be circumvented with the help of the (normally ordered)
characteristic function

C(ξ, ξ∗) = 〈F 〉 (64)

with

F = exp (ξΨ†) exp (−ξ∗Ψ). (65)

This function of the two parameters ξ and ξ∗ allows the
derivation of all expectation values of Ψ†mΨn using

〈Ψ†mΨn〉 = (−)n
∂m+nC

∂ξm ∂ξ∗ n

∣∣∣
ξ=ξ∗=0

. (66)

Due to

[F, Ψ ] = −ξF, [F, Ψ†] = −ξ∗F (67)

and

FΨ = − ∂F
∂ξ∗ , Ψ†F = ∂F

∂ξ (68)

equation (12) leads to the system of partial differential
equations

∂
∂t 〈F 〉 = −{(γL − iω) ξ ∂∂ξ + (γL + iω) ξ∗ ∂

∂ξ∗ } 〈F 〉
+ i

2g ξ 〈Fσ+〉+ i
2g ξ

∗ 〈Fσ−〉, (69)

∂
∂t 〈Fσz〉 = −{(γL − iω) ξ ∂∂ξ + (γL + iω) ξ∗ ∂

∂ξ∗ } 〈Fσz〉
−2γA 〈F + Fσz〉
+ig ( ∂

∂ξ∗ −
1
2ξ) 〈Fσ+〉+ ig ( ∂∂ξ −

1
2ξ
∗) 〈Fσ−〉 ,

(70)
∂
∂t 〈Fσ+〉 = −{(γL − iω) ξ ∂∂ξ + (γL + iω) ξ∗ ∂

∂ξ∗ } 〈Fσ+〉
−(γA+2γP − iω) 〈Fσ+〉
+ i

4g ξ
∗ 〈F 〉 − i

2g ( ∂∂ξ −
1
2ξ
∗) 〈Fσz〉, (71)

∂
∂t 〈Fσ−〉 = −{(γL − iω) ξ ∂∂ξ + (γL + iω) ξ∗ ∂

∂ξ∗ } 〈Fσ−〉
−(γA+2γP + iω) 〈Fσ−〉
+ i

4g ξ 〈F 〉 −
i
2g ( ∂

∂ξ∗ −
1
2ξ) 〈Fσz〉· (72)

This can be simplified by the transformations

C0 = 〈F + Fσz〉, C1 = 〈F − Fσz〉 (73)

and

C± = i e∓iωt 〈Fσ±〉 (74)

and by the transition to rotating coordinates

ζ = ξe+iωt, ζ∗ = ξ∗e−iωt, (75)

resulting in
∂
∂tC0 = −γL (ζ ∂

∂ζ + ζ∗ ∂
∂ζ∗ )C0 − 2γAC0

+g ( ∂
∂ζ∗C+ + ∂

∂ζC−), (76)

∂
∂tC1 = −γL (ζ ∂

∂ζ + ζ∗ ∂
∂ζ∗ )C1 + 2γAC0

−g ( ∂
∂ζ∗C+ + ∂

∂ζC− − ζC+ − ζ∗C−), (77)

∂
∂tC+ = −γL (ζ ∂

∂ζ + ζ∗ ∂
∂ζ∗ )C+ − (γA+2γP) C+

+ 1
4g

∂
∂ζ (C0 − C1)− 1

4g ζ
∗C0, (78)

∂
∂tC− = −γL (ζ ∂

∂ζ + ζ∗ ∂
∂ζ∗ )C− − (γA+2γP) C−

+ 1
4g

∂
∂ζ∗ (C0 − C1)− 1

4g ζC0. (79)

This system of partial differential equations can be trans-
formed to a system of ordinary differential equations by
separation: we split off common factors ζm or ζ∗ m with
m ∈ {1, 2, . . .} and use variables

x = ζ∗ζ (80)

and t. The dependence on x requires special functions,
which will be presented in the following sections.



108 The European Physical Journal D

9 Undamped solutions

In order to solve the coupled system (76–79) we will at
first concentrate on the main contributions (∝ g) and ne-
glect the damping. The solution in this case introduces
the notations needed in Section 10 to describe damping.

With γL = γA = γP = 0 the system simplifies consid-
erably. In this case the eigenfrequencies are Ω±nn′ which
now (for n 6= n′) will be written as Ω±n+m,n. We employ
the pair of auxiliary functions

a±nm(t) = a±nm(0) cos (Ω±n+m,nt)

+ā±nm(0) sin (Ω±n+m,nt), (81)

ā±nm(t) = ā±nm(0) cos (Ω±n+m,nt)

−a±nm(0) sin (Ω±n+m,nt), (82)

and a second pair (b±nm(t), b̄±nm(t)) of the same form. For
n = n′ (i.e. m = 0) we have Ω+

nn = Ωn,

a+
n0(t) = a+

n0(0)cos(Ωnt) + ā+
n0(0)sin(Ωnt), (83)

ā+
n0(t) = ā+

n0(0)cos(Ωnt)− a+
n0(0)sin(Ωnt), (84)

while Ω−nn = 0 leads to constant a−n0 and ā−n0. The con-
tribution of the ground state to the frequency spectrum
appears as 1

2Ωn (= Ω±n,−1) leading to

An(t) = An(0) cos (1
2Ωnt)

+
g

1
2Ωn

Ān(0) sin (1
2Ωnt), (85)

Ān(t) = Ān(0) cos (1
2Ωnt)

−
1
2Ωn

g
An(0) sin (1

2Ωnt), (86)

and Bn(t) and B̄n(t) of the same form, and to a constant
A because of Ω±−1,−1 = 0 .

With these abbreviations the solutions can be written
as – with m ∈ {1, 2, . . .} –

C0 =
∑
n

(a−n0 + a+
n0)Ln(x)

+
∑
nm

(a−nm + a+
nm) ζm

√
n+1+m√
n+1

L(m)
n (x)

+
∑
nm

(b−nm + b+nm) ζ∗ m
√
n+1+m√
n+1

L(m)
n (x),(87)

C1 = A+
∑
n

An ζ
n+1 +Bn ζ

∗ n+1

+
∑
n

(a−n0 − a+
n0)Ln+1(x)

+
∑
nm

(a−nm − a+
nm) ζm L

(m)
n+1 (x)

+
∑
nm

(b−nm − b+nm) ζ∗ m L
(m)
n+1 (x), (88)

C+ =
∑
n

Ān ζ
n + 1

2{ā
−
n0 + ā+

n0} ζ∗
1√
n+1

L(1)
n (x)

+ 1
2

∑
nm

{ā−nm − ā+
nm} ζm−1

√
n+1+m L

(m−1)
n+1 (x)

+ 1
2

∑
nm

{b̄−nm+b̄+nm} ζ∗ m+1 1√
n+1

L(m+1)
n (x) (89)

in terms of generalized Laguerre polynomials L
(m)
n (x)

(cf. [17] Eq. (22.3.9)). The solution C− can be inferred
from C+ by replacing ζ ↔ ζ∗, ā±nm ↔ b̄±nm and Ān → B̄n
and ā−n0 → −ā−n0.

9.1 Special initial conditions

9.1.1 States of the atom

If the atom was initially in the ground state, i.e.
〈σz〉 = −1, and uncorrelated with the field, we have as
initial conditions C0 = 0 and C± = 0, which results in
vanishing values Ān(0) = B̄n(0) = ā±n0(0) = ā±nm(0) =
b̄±nm(0) = 0 and in the properties a+

n0(0) = −a−n0,
a+
nm(0) = −a−nm(0) and b+nm(0) = −b−nm(0). The remain-

ing parameters have to be determined from the function
C1,

C1 = A+
∑
n

An(0) ζn+1 +Bn(0) ζ∗ n+1 + 2a−n0Ln+1(x)

+ 2
∑
nm

{a−nm(0) ζm + b−nm(0) ζ∗ m} L(m)
n+1 (x). (90)

If the atom was excited in the beginning, i.e. 〈σz〉 = 1,
and uncorrelated with the field, we have as initial con-
ditions C1 = 0 and C± = 0: again Ān(0) = B̄n(0) =
ā±n0(0) = ā±nm(0) = b̄±nm(0) = 0 vanishing and now also
A = An(0) = Bn(0) = 0. But now we have a+

n0(0) = a−n0,
a+
nm(0) = a−nm(0) and b+nm(0) = b−nm(0) and the remaining

parameters have to be determined from the function C0:

C0 = 2
∑
n

a−n0 Ln(x)

+ 2
∑
nm

{a−nm(0) ζm + b−nm(0) ζ∗ m}
√
n+ 1+m√
n+1

L(m)
n (x).

(91)

Expansions in terms of generalized Laguerre polynomials
are unambiguous, since these polynomials form a complete
orthogonal system ([17] Eq. (22.2.12)).

9.1.2 Field states

The normally ordered characteristic function appears in
number representation as (with m = n′ − n)

C(ξ, ξ∗) =
∑
n≤n′

ξm〈n|%|n′〉+ (−ξ∗)m〈n′|%|n〉
1 + δnn′

×
√
n!
n′!

L(m)
n (ξξ∗). (92)
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(Here we allow also for m = 0.) For a thermal state the
density matrix elements are given by

〈n|%|n′〉 = δnn′ (1− z) zn (93)

with z = exp (−~ω/kT ) < 1, whereas for a Glauber state
with % = |α〉〈α|

〈n|%|n′〉 = exp (−|α|2) αnα∗ n
′
/
√
n! n′!. (94)

A laser state of the field is a phase averaged Glauber
state, i.e.

〈n|%|n′〉 = δnn′ exp (−|α|2) |α|2n/n!. (95)

We thus have as characteristic function for a Glauber state

C(ξ, ξ∗) = exp (−|α|2)

×
∑
nm

|α|2n
(n+m)!

(α∗ξ)m + (−αξ∗)m
1 + δm0

L(m)
n (ξξ∗), (96)

whereas for a laser state there are only the terms with
m = 0.

9.2 Number of field quanta

The expectation value of the number of field quanta can
now be calculated as

〈Ψ†Ψ〉 = −∂
2 (C0 + C1)
∂ζ ∂ζ∗

∣∣∣
ζ=ζ∗=0

. (97)

Because

∂2 (ζl f(x) + ζ∗ m g(x)
∂ζ ∂ζ∗

∣∣∣
ζ=ζ∗=0

= δl0 f
′(0) + δm0 g

′(0)

(98)

and L(m) ′
n (0) = −

(
n+m
n−1

)
we get

〈Ψ†Ψ〉 =
∑
n

(2n+ 1) a−n0 − a+
n0(t). (99)

This can be interpreted physically as follows: if the atom
was initially excited (upper case) or in the ground state
(lower case), we have

〈Ψ†Ψ〉 =
∑
n

{2n+ 1∓ cos (Ωnt)} an (100)

with

an =
{ 1

2%n(0)
1
2%n+1(0)

, (101)

since an depends on the initial probability for n resp. n+1
photons. If the field began in a Glauber state |α〉 (i.e. with
%n = exp (−|α|2) |α|2n/n!) with exp (−|α|2) � 1 we get
in accordance with equation (51)∑

n

(2n+1) an ≈ |α|2 ± 1
2 , (102)

whereas the sum over an cos (Ωnt) leads for |α| � 1 to
the collapse and revival already mentioned in Figure 7.
Many terms seem to contribute here. However, xn/n! is
particularly large at n ≈ x− 1

2 . Therefore we expand Ωn
around n ≈ |α|2 ± 1

2 and take only the first two terms. In

terms of α± =
√
|α|2 ± 1

2 the result reads

−
∑
n

a+
n0(t) = ∓ 1

2 exp
(
−|α|2 + |α|2 cos

gt

2α±

)
× cos

(
α±gt

2
+ |α|2 sin

gt

2α±
+

1± 1
2

gt

2α±

)
· (103)

If the atom was initially in the ground state (lower sign),
the result for small t and large |α| is already known else-
where [24] in the form

〈Ψ†Ψ〉 ≈ |α|2 − 1
2 + 1

2 exp {− 1
8 (gt)2} cos |αgt|. (104)

According to this the amplitude does not depend on the
intensity |α|2 and is called collapse function [25]. Our ex-
pression in equation (103) even shows the revival (Fig. 8),
however not with the correct amplitude – one should also
have included higher terms. Comparison with Figure 5
shows, that the parameters used [9] do not allow for a
revival because the damping is not small enough.

10 Damped solutions

The solutions including damping are more complicated as
they require generalized hypergeometric functions. We do
not give these “solutions”, because there are no orthog-
onality relations known even for normal hypergeometric
functions. Thus these functions can not be used to fit the
initial distributions.

We propose to use solutions, that take advantage of
(γL, γP, γA) � g. We already know the time dependent
factors and fit the initial values to the unperturbed terms
using the old equations (87–89); the effect of damping is
incorporated only in the time dependence of the auxiliary
functions,

a±nm(t) = a±nm(0) exp (−γn+m,nt) cos (Ω±n+m,nt)

+ ā±nm(0) exp (−γn+m,nt) sin (Ω±n+m,nt),
(105)

ā±nm(t) = ā±nm(0) exp (−γn+m,nt) cos (Ω±n+m,nt)

− a±nm(0) exp (−γn+m,nt) sin (Ω±n+m,nt),
(106)

and b±nm(t) and b̄±nm(t) of the same form. Here the param-
eters

γn = (2n+ 1) γL+γA+γP (107)

and

γnn′ = 1
2 (γn + γn′) (108)
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Fig. 8. Expectation value of the photon number as function of time without damping, if there was initially a Glauber state
with 5 photons and the atom in the ground state: (—–) exact calculation, (- - -) with the approximation equation (103).

i.e.

γn+m,n = γL+γA+γP+(2n+m) γL (109)

are defined similarly to Ω+
nn′ in equation (15).

Furthermore we employ

a+
n0(t) = a+

n0(0) exp (−γnt) cos (Ωnt)

+ā+
n0(0) exp (−γnt) sin (Ωnt)}, (110)

ā+
n0(t) = ā+

n0(0) exp (−γnt) cos (Ωnt)
−a+

n0(0) exp (−γnt) sin (Ωnt). (111)

The terms with a−n0 are already known, namely equal to
1
4

∑
ε〈ε, n|%|ε, n〉. This quantity does not change in time

if there is no damping – and we have determined the sum
in equation (31) resp. equation (43).

The terms with ā−n0 could be applied without any
Laguerre polynomial, since we could work with any dif-
ferentiable function f :

C+ = 1
2ζ
∗ exp{−(γ0 + γP)t}f(xe−2γLt)

and
C− = − 1

2ζ exp{−(γ0 + γP)t}f(xe−2γLt)

are exact solutions, yet we may also use

ā−n0(t) = exp {−(γn + γP) t) ā−n0(0). (112)

We have the pair

An(t) = An(0) exp (− 1
2γnt) cos (1

2Ωnt)

+
(
gĀn(0)− γL−γA

2
An(0)

)
× exp (− 1

2γnt)
sin (1

2Ωnt)
1
2Ωn

, (113)

Ān(t) = Ān(0) exp (− 1
2γnt) cos (1

2Ωnt)

−
((1

2Ωn)2

g
An(0)− γL−γA

2
Ān(0)

)
× exp (− 1

2γnt)
sin (1

2Ωnt)
1
2Ωn

, (114)

and Bn(t) and B̄n(t) of the same form and a constant A.
It follows from equations (10, 26), that this yields the

correct time dependent basis.

10.1 Number of field quanta

When beginning with a Glauber state, one part of the
expression equation (99) is already known from equa-
tion (51). Still missing is the term

−
∑
n

a+
n0(t) = ∓ 1

2 exp [−|α|2 − (γL+γA+γP) t]

× |α|1∓1
∑
n

τn

(n+ 1
2∓

1
2 )!

cosΩnt. (115)

This can be approximated by the same procedure as that
leading to equation (103) and results in

−
∑
n

a+
n0(t) ≈ ∓ 1

2 exp
(
−|α|2−(γA+γP±γL) t+τ cos

gt

2τ±

)
× cos

(
τ± gt

2
+ τ sin

gt

2τ±
+

1±1
2

gt

2τ±

)
, (116)

if we – stressing the generalization against equation (103)

– use τ± =
√
τ ± 1

2 , where τ is given in equation (42). As
before, the upper sign belongs to an atom initially excited
and the lower sign to an atom initially in the ground state.

Figure 9 shows an example.

11 Summary and outlook

Since it is impossible to completely decouple real physical
systems from their macroscopic environment they should
be treated as open. We took the Jaynes-Cummings model
allowing for damping with the time dependence given by
the Liouville (master) equation (5) which results in a non
unitary dynamics and causes irreversibilty [26]. Observ-
ables begin their evolution linearly in time, not quadrati-
cally – i.e. like exp (−γt) cosωt instead of cosωt. This is
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Fig. 9. Change of Figure 8 due to damping: expectation value of the number of photons as a function of time, if initially there
was a Glauber state with 5 photons and an atom in the ground state, after equations (51, 116). In comparison to a Fock state
(cf. Fig. 5) there are less oscillations for a Glauber state, because in this case the contributions of the constituent Fock states
average out after a short time (collapse). The broken line displays the contribution of equation (51).

an important aspect with regard to the quantum Zeno ef-
fect [27,28] where a true stopping of the dynamics in the
limit of frequently repeated measurements relies on the
quadratic time dependence. With a residual linear con-
tribution the dynamics cannot be stopped but at most
slowed down. The linearity for small t is also an impor-
tant ingredient for deriving Fermi’s golden rule. As shown
in one of Döring’s textbooks [29] this rule is often de-
duced from incorrect arguments. The rule follows however
for open systems [8].

The differential equation was solved in the basis
of dressed states (Eq. (2)) diagonalizing the Jaynes-
Cummings Hamiltonian. (The master equation may also
be integrated numerically [22] resulting in the same num-
bers as given here.) Our procedure is motivated by the
fact that the Hamiltonian contains large frequencies and
the damping is described by smaller constants.

The main effect of the transition from a closed to an
open system is the rather fast “decoherence” [30]: the col-
lapse of the wave function is a consequence rather than an
additional postulate [26]. The collapse of the non diagonal
density matrix elements in energy representation is dis-
played clearly in Figures 1 to 3. It should be kept in mind
that without damping the curves in the upper part of Fig-
ure 1 would be horizontal lines and the rest of Figures 1
to 3 would show oscillations without damping.

The system of a two-level atom (described by a 2×2
density matrix) coupled to a harmonic oscillator is de-
scribed by four density matrices of harmonic oscillators.
Since we normally are interested only in a few observ-
ables we have discussed not only the time dependence of
the density operator but also the time dependence of ob-
servables. Here it is important to pay regard to the cor-
relations between the degrees of freedom – erroneously
neglected in the quasi classical approximation. This can
be handled with a system of partial differential equations
for the characteristic functions. Damping, however, leads
to generalized hypergeometric functions which can not be
fitted to the initial values exactly but only approximately.

This has been shown for the number of field quanta as an
example.
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